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Abstract

LetMbe a stationary manifold equipped with a Lorentz metric whose coefficients are unbounded.
By using variational methods and topological tools, some existence and multiplicity results of
normal geodesics joining two fixed submanifolds can be proved.
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1. Introduction and main results

LetM be a smooth finite-dimensional manifold and〈·, ·〉z be a Lorentz metric on it,
i.e., a smooth symmetric (0, 2) tensor field onM which defines a non-degenerate bilinear
form of index 1 on each tangent spaceTzM, z ∈M. A smooth curvez : [0,1] →M is a
geodesic inM if

Dsż(s) = 0 for all s ∈ [0,1],

whereDs denotes the covariant derivative alongz induced by the Levi-Civita connection
of the metric〈·, ·〉z. It is well known that, ifz = z(s) is a geodesic, then its energyE(z) =
〈ż(s), ż(s)〉z is constant in [0,1]. So, a geodesic is named timelike, lightlike or spacelike if
its energy is negative, null or positive, respectively (for more details, see[1,16,20]).

Here, we are interested in geodesics joining two submanifolds in a special class of
Lorentzian manifolds, so the following definitions hold.

∗ Corresponding author. Fax:+39-0805-963612.
E-mail address:candela@dm.uniba.it (A.M. Candela).

1 Supported by M.U.R.S.T. (research funds ex 40% and 60%).

0393-0440/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0393-0440(02)00060-8



172 A.M. Candela, A. Salvatore / Journal of Geometry and Physics 44 (2002) 171–195

Definition 1.1. Let (M, 〈·, ·〉z), N0, N1 be a Lorentzian manifold and, respectively, two
of its submanifolds. A curvez : [0,1] →M is a normal geodesic joiningN0 toN1 if it is
a geodesic such that

z(0) ∈ N0, ż(0) ∈ Tz(0)N⊥0 and z(1) ∈ N1, ż(1) ∈ Tz(1)N⊥1 , (1.1)

where fori = 0,1,Tz(i)N⊥i denotes the orthogonal space ofTz(i)Ni in Tz(i)Mwith respect
to the non-degenerate bilinear form〈·, ·〉z.

Definition 1.2. A Lorentzian manifold(M, 〈·, ·〉z) is called (standard) stationary if there
exists a smooth connected finite-dimensional Riemannian manifold(M0, 〈·, ·〉x) such that
M =M0 × R and〈·, ·〉z is given by

〈ζ, ζ 〉z = 〈α(x)ξ, ξ〉x + 2〈δ(x), ξ〉xτ − β(x)τ2 (1.2)

for anyz = (x, t) ∈M =M0 × R andζ = (ξ, τ ) ∈ TzM ≡ TxM0 × R, whereα(x)
is a smooth symmetric linear strictly positive operator fromTxM0 into itself, δ a smooth
vector field andβ a smooth and positive scalar field on the Riemannian manifoldM0.

In particular, ifδ ≡ 0, the metric(1.2)is called static and(M, 〈·, ·〉z) is a static Lorentzian
manifold.

From now on, letM =M0×R be a stationary Lorentzian manifold equipped with the
metric(1.2). LetP0 andP1 be two given submanifolds ofM0 and lett0, t∗ ∈ R be fixed.
Set

P̃0 = P0 × {t0}, P̃1 = P1 × R, P̃ ∗1 = P1 × {t∗}. (1.3)

The aim of this paper is to study the existence of geodesicsz : [0,1] → M joining in a
normal wayP̃0 to P̃1 or, respectively,P̃0 to P̃ ∗1 .

In particular, it means to study the existence of geodesics joining a point to a worldline
of an observer or the geodesic connectedness in a stationary manifold.

If the coefficientsα, β andδ of the stationary metric are bounded, some existence results
for lightlike geodesics joining an event to a line have been studied in[10], while the exis-
tence of lightlike geodesics joining̃P0 to P̃1 (normal only “in the spatial part”) has been
stated in[6]; furthermore, other existence results for normal geodesics joining particular
submanifolds have been stated in static manifolds (cf.[19]) or in orthogonal splitting type
ones, i.e., when in(1.2) it is δ ≡ 0 whileα, β are time dependent (cf.[5]).

On the other hand, we know only two results concerning the geodesical connectedness
of a stationary manifold with unbounded coefficients (cf.[14,23]). In both these papers it
is α ≡ 1 while δ has a sublinear growth at infinity with respect to the Riemannian metric
onM0, but the difference is in the assumptions onβ and in the methods: in[23] β has a
sublinear growth at infinity and the author proves the existence of a geodesic joining two
fixed points by using a linking argument applied to the action functional, while in[14] β
has to be bounded from above but the stationary manifold so obtained is just an example of
a more general class of Lorentzian manifolds which an intrinsic approach applies to.

Here, we want to extend the existence result in[23] to geodesics joining two given
submanifolds. Moreover, at least in the case of the geodesics fromP̃0 to P̃1, we weaken the
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assumptions onβ just requiring a subquadratic growth. Then, some multiplicity theorems
are proved.

Let us point out that if the coefficients of〈·, ·〉z are bounded, then the problem can be
reduced to the research of critical points of a new functional bounded from below and
depending only on the Riemannian part (for example, see[6,13]). On the contrary, in this
paper the lack of upper bounds for the coefficients does not make useful such a “trick”. So, it
is better to manage directly the action functional and use a finite-dimensional approximation
on the space of the time variable in order to apply a generalization of the Rabinowitz saddle
point theorem and the theory of relative category.

Let us remark that the hypothesis ‘β subquadratic’ is not too strange since, ifβ has a
quadratic growth, a geodesical connectedness result may not hold. In fact, a counterexample
is given by the anti-de Sitter space–timeM =] − π/2, π/2[×R equipped with the metric

ds2 = 1

cos2x
dx2 − 1

cos2x
dt2,

which is geodesically complete, but not geodesically connected (cf.[22]).
We will state the following results:

Theorem 1.3. LetM =M0 × R be a manifold equipped with the stationary Lorentzian
metric(1.2)such that

(H1) (M0, 〈·, ·〉x) is a completeC3 n-dimensional Riemannian manifold;
(H2) there existq ∈ [0,1[, some strictly positive constantsλ, ν, R1, R2 and a pointx0 ∈

M0 such that for allx ∈M0, ξ ∈ TxM0, it is

〈α(x)ξ, ξ〉x ≥ λ〈ξ, ξ〉x, β(x) ≥ ν,
β(x) ≤ R1 + R2d

q+1(x, x0), (1.4)√
〈δ(x), δ(x)〉x ≤ R1 + R2d

q(x, x0), (1.5)

whered(·, ·) denotes the distance inM0 induced by its Riemannian metric.

LetP0 andP1 be two subsets ofM0 satisfying the following conditions:

(H3) P0 andP1 are closed submanifolds ofM0 such that one of them is compact;
(H4) P0 ∩ P1 = ∅.

Then, there exists at least a normal geodesic joiningP̃0 to P̃1.

Theorem 1.4. LetM = M0 × R be a manifold equipped with the stationary Lorentz
metric(1.2)such that the hypothesis(H1) holds while assumption(H2) is replaced by the
stronger condition:

(H2)
∗ there existq ∈ [0,1[, some strictly positive constantsλ, ν, R1, R2 and a point
x0 ∈M0 such that for allx ∈M0, ξ ∈ TxM0, the conditions(1.4) and (1.5)are
satisfied and

β(x) ≤ R1 + R2d
q(x, x0). (1.6)

LetP0 andP1 be two subsets ofM0 satisfying(H3) and(H4).
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Then, there exists a normal geodesic joiningP̃0 to P̃ ∗1 . Moreover, if|t∗| is small enough
such a geodesic is spacelike while it is timelike if|t∗| is large enough in the stronger
assumptionq ∈ [0,1/2[.

In particular, if we assumeP0 = {x1} andP1 = {x2} (x1, x2 ∈ M0), the assumption
(H3) is trivial while (H4) meansx1 �= x2. Then, the previous theorem implies the main
result in[23] (if it is α(x) ≡ 1) or, in general, the following corollary:

Corollary 1.5. If (M, 〈·, ·〉z) is a stationary Lorentzian manifold such that(H1) and(H2)∗
hold, thenM is geodesically connected.

Remark 1.6. By the assumptions(H1) and(H2), respectively(H2)
∗, it follows thatM is

globally hyperbolic (cf.[25, Corollary 3.4]). Anyway, this is not enough to imply thatM
is geodesically connected (for a counterexample, see[26]).

The following multiplicity theorems hold even if, eventually, we consider two submani-
foldsP0 andP1 which are not disjoint:

Theorem 1.7. LetM = M0 × R be a manifold equipped with the stationary Lorentz
metric(1.2)which satisfies(H1), (H2) and

(H5) there existsp ≥ 0 such that for allx ∈M0, ξ ∈ TxM0, it is

〈α(x)ξ, ξ〉x ≤ (R1 + R2d
p(x, x0))〈ξ, ξ〉x,

whereR1, R2 > 0 andx0 are as in the hypothesis(H2).

LetP0 andP1 be two subsets ofM0 such that(H3) holds and assume

(H6) M0 is not contractible in itself while bothP0 andP1 are contractible in the whole
manifoldM0.

Then, there exist infinitely many non-constant spacelike geodesicszn joining P̃0 to P̃1 whose
energiesE(zn) are such that

lim
n→+∞E(zn) = +∞. (1.7)

Theorem 1.8. LetM =M0×R be a manifold equipped with the stationary Lorentz metric
(1.2) such that(H1), (H2)∗ and (H5) are satisfied. LetP0 andP1 be two subsets ofM0
which satisfy(H3). If (H6) holds too, then there exist infinitely many spacelike geodesicszn
joining P̃0 to P̃ ∗1 which verify(1.7).

On the other hand,

lim
|t∗|→+∞

N(P0, P1, t
∗) = +∞, (1.8)

whereN(P0,P1, t∗) denotes the number of timelike orthogonal geodesics joiningP̃0 to P̃ ∗1 .

Remark 1.9. In the hypotheses (H2), (H2)∗ and (H5) it is not restrictive to assume thatR1
andR2 are the same constant. Moreover, since the real numberp in the assumption(H5)

can be arbitrarily large, we supposep > 2q.
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Remark 1.10. Let us point out that, ifP0∩P1 �= ∅, then for everȳx ∈ P0∩P1 the constant
functionz̄ = (x̄,0) is a trivial normal geodesic joining̃P0 to P̃1.Moreover, ift∗ = 0, such
a trivial geodesic̄z also joinsP̃0 andP̃ ∗1 . So, the assumption(H4) in Theorem 1.3or in
Theorem 1.4with t∗ = 0 implies that the found geodesic is not trivial, while ift∗ �= 0
and small enough,(H4) allows to state that the found geodesic is spacelike. On the other
hand, this assumption is not necessary in the multiplicity theorems because, obviously,
the condition(1.7) gives the existence of infinitely many non-constant spacelike normal
geodesics.

Remark 1.11. The previous results apply, in particular, ifP0 andP1 are reduced to a single
point. Then,Theorems 1.3 and 1.7imply an existence and, respectively, a multiplicity result
for geodesics joining one point to a “line”, whileTheorems 1.4 and 1.8give an existence
and, respectively, a multiplicity result for geodesics joining two fixed points.

2. Variational approach

First of all, we need some functional manifolds in order to look for normal geodesics
joining two submanifolds via variational methods.

Let I = [0,1] andn ∈ N. The Sobolev spaceH 1(I,Rn) is the set of the absolutely
continuous curves with square summable derivative equipped with the scalar product

(x, y) =
∫ 1

0
〈ẋ, ẏ〉ds +

∫ 1

0
〈x, y〉ds

and the norm

‖x‖2
1,2 = ‖x‖2 + ‖ẋ‖2 =

∫ b

a

|x(s)|2 ds +
∫ b

a

|ẋ(s)|2 ds,

where〈·, ·〉 denotes the Euclidean scalar product ofR
n and‖·‖ the usual norm ofL2(I,Rn).

LetM be a connected, finite-dimensional smooth manifold. We denote byH 1(I,M)

the set of curvesz : I →M such that for any local chart(U, ϕ) ofM, withU ∩ z(I ) �= ∅,
the curveϕ ◦ z belongs to the Sobolev spaceH 1(z−1(U),Rn), n = dimM.

It is well known (cf. [21]) that H 1(I,M) is equipped with a structure of infinite-
dimensional manifold modeled on the Hilbert spaceH 1(I,Rn). If z ∈ H 1(I,M), the
tangent space toH 1(I,M) at z can be identified as follows:

TzH
1(I,M) ≡ {ζ ∈ H 1(I, TM) : π ◦ ζ = z},

whereTM denotes the tangent bundle ofM andπ : TM →M the bundle projection.
In other words,TzH 1(I,M) is the set of the vector fields alongz whose components with
respect to a local chart are functions of classH 1.

If M is a Lorentzian manifold equipped with the metric〈·, ·〉z, the action integralf :
H 1(I,M)→ R can be defined as

f (z) =
∫ 1

0
〈ż(s), ż(s)〉z ds, z ∈ H 1(I,M). (2.1)
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It is easy to prove thatf is aC1 functional and for anyz ∈ H 1(I,M) andζ ∈ TzH 1(I,M)

there results

df (z)[ζ ] = 2
∫ 1

0
〈ż(s),Dsζ(s)〉z ds. (2.2)

LetN0 andN1 be two submanifolds ofM and set

Ω(N0,N1;M) = {z ∈ H 1(I,M) : z(0) ∈ N0, z(1) ∈ N1}. (2.3)

SinceΩ(N0,N1;M) is a smooth submanifold ofH 1(I,M) (cf. [17]), takenz ∈ Ω(N0,

N1;M) the tangent space atz toΩ(N0,N1;M) is given by

TzΩ(N0,N1;M) = {ζ ∈ TzH 1(I,M) : ζ(0) ∈ Tz(0)N0, ζ(1) ∈ Tz(1)N1}.
According toDefinition 1.1, the geodesics joiningN0 toN1 which are normal with respect
to 〈·, ·〉z satisfy a suitable variational principle. Indeed, if we denote byf̄ the restriction of
the action integralf to the manifoldΩ(N0,N1;M), the following proposition shows that,
as in the Riemannian case (cf.[17]), the critical pointsz of f̄ onΩ(N0,N1;M) are the
normal geodesics joiningN0 toN1.

Proposition 2.1. A curvez : I →M is a normal geodesic joiningN0 toN1 if and only if
z ∈ Ω(N0,N1;M) is a critical point off̄ .

Proof. Takenz ∈ Ω(N0,N1;M), simple calculations give

df̄ (z)[ζ ] = −2
∫ 1

0
〈Dsż, ζ 〉z ds + 2〈ż(1), ζ(1)〉z − 2〈ż(0), ζ(0)〉z (2.4)

for all ζ ∈ TzΩ(N0,N1;M). So, if z is a normal geodesic fromN0 toN1, then(1.1)and
the geodesic equation imply thatz ∈ Ω(N0,N1;M) and df̄ (z) = 0.

Vice versa, ifz ∈ Ω(N0,N1;M) is a critical point off̄ , then there results∫ 1

0
〈Dsż, ζ 〉z ds = 0 for allζ ∈ TzΩ(N0,N1;M) with compact support.

Hence, by standard density and regularity arguments,z is a geodesic inM. Thus, by(2.4)
it follows 〈ż(1), ζ(1)〉z = 〈ż(0), ζ(0)〉z for all ζ ∈ TzΩ(N0,N1;M); whence, choosing in
particularζ such thatζ(0) = 0 or ζ(1) = 0, the boundary conditions(1.1) follow. �

From now on, letM = M0 × R be a stationary Lorentz manifold with(M0, 〈·, ·〉x)
Riemannian manifold (according toDefinition 1.2). By the Nash embedding theorem we
can assume thatM0 is a submanifold of an Euclidean spaceR

N while〈·, ·〉x is the restriction
toM0 of the Euclidean metric〈·, ·〉 of R

N . So, in the sequel, we shall still denote by〈·, ·〉
the Euclidean metric onM0 and byd the corresponding distance (seeRemark 4.3or, in
general,[18]). By means of the product structure ofM, the infinite-dimensional manifold
H 1(I,M) is diffeomorphic to the product manifoldH 1(I,M0) × H 1(I,R). Moreover,
H 1(I,M) is equipped with a structure of an infinite-dimensional Riemannian manifold
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〈·, ·〉1 by setting

〈ζ, ζ 〉1 =
∫ 1

0
〈ξ, ξ〉ds +

∫ 1

0
〈Dsξ,Dsξ〉ds +

∫ 1

0
τ2 ds +

∫ 1

0
τ̇2 ds

for any z = (x, t) ∈ H 1(I,M) and ζ = (ξ, τ ) ∈ TzH
1(I,M) ≡ TxH

1(I,M0) ×
TtH

1(I,R) ≡ TxH
1(I,M0) × H 1(I,R). Since(M0, 〈·, ·〉) is a complete Riemannian

manifold, alsoH 1(I,M) is a complete Riemannian manifold equipped with the previous
scalar product (cf.[21]).

Then, by(1.2) the action integralf : H 1(I,M)→ R in (2.1)becomes

f (z) =
∫ 1

0
(〈α(x)ẋ, ẋ〉 + 2〈δ(x), ẋ〉ṫ − β(x)ṫ2)ds (2.5)

for anyz = (x, t) ∈ H 1(I,M).
LetP0, P1 be two closed submanifolds ofM0 and consider the submanifolds̃P1 andP̃ ∗1

ofM defined in(1.3).
Moreover, since ifz = (x, t) is a geodesic inM thenzT = (x, t + T ) is still a geodesic

for anyT ∈ R, without loss of generality we can assumet0 = 0 and defineP̃0 = P0× {0}.

Remark 2.2. LetN be a submanifold ofMwhile z = (x, t) is a geodesic onM satisfying
the conditions

z(s0) ∈ N, ż(s0) ∈ Tz(s0)N⊥ (2.6)

for a certains0 ∈ [0,1]. If P is a submanifold ofM0 and there exists̄t ∈ R such that
N = P × {t̄}, then the conditions(2.6)are equivalent to

x(s0) ∈ P, t (s0) = t̄ ,
〈α(x(s0))ẋ(s0)+ ṫ (s0)δ(x(s0)), ξ〉x = 0 for allξ ∈ Tx(s0)P .

On the other hand, ifN = P × R, (2.6)becomes

x(s0) ∈ P,
〈α(x(s0))ẋ(s0)+ ṫ (s0)δ(x(s0)), ξ〉x = 0 for allξ ∈ Tx(s0)P ,
〈δ(x(s0)), ẋ(s0)〉x − ṫ (s0)β(x(s0)) = 0.

In order to look for geodesics joining̃P0 to P̃1, setZ0 = Ω(P̃0, P̃1;M). According to
the product structure of such submanifolds, there results

Z0 ≡ Ω(P0, P1;M0)×W0,

whereW0 is the closed subspace ofH 1(I,R) defined as

W0 = {t ∈ H 1(I,R) : t (0) = 0}.
Moreover, the tangent space at a curvez = (x, t) ∈ Z0 is given by

TzZ
0 = TzΩ(P̃0, P̃1;M) ≡ TxΩ(P0, P1;M0)×W0.
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It is easy to see that

W0 = H 1
0 ⊕ RjI

with

H 1
0 = {τ ∈ H 1(I,R) : τ(0) = τ(1) = 0}, jI : s ∈ I �→ s ∈ R.

Whence, by the Poincaré inequality the spaceW0 can be equipped with the following
equivalent norm:

‖t‖2
0 = ‖ṫ‖2 =

∫ 1

0
ṫ2 ds. (2.7)

Now, assumeZ∗ = Ω(P̃0, P̃
∗
1 ;M). By the product structure of̃P0 andP̃ ∗1 it follows

Z∗ ≡ Ω(P0, P1;M)×W ∗,

where

W ∗ = {t ∈ H 1(I,R) : t (0) = 0, t (1) = t∗}.
Clearly,W ∗ is a closed affine submanifold ofH 1(I,R) as

W ∗ = H 1
0 + T ∗ with T ∗ : s ∈ I �→ t∗s ∈ R.

Hence, the tangent space at a curvez = (x, t) ∈ Z∗ is given by

TzZ
∗ = TzΩ(P̃0, P̃

∗
1 ;M) ≡ TxΩ(P0, P1;M0)×H 1

0 .

Let us remark that, if the assumption(H3) holds, both the submanifoldsZ0 andZ∗ of
H 1(I,M) can be equipped with the following equivalent Riemannian structure

〈ζ, ζ 〉H = 〈(ξ, τ ), (ξ, τ )〉H =
∫ 1

0
〈Dsξ,Dsξ〉ds +

∫ 1

0
τ̇2 ds.

Finally, we set

f 0 = f |Z0, f ∗ = f |Z∗ .
Then,Proposition 2.1implies that the normal geodesics joiningP̃0 to P̃1, respectivelyP̃ ∗1 ,
are the critical points off 0 onZ0, respectivelyf ∗ onZ∗.

3. Critical point theorems for indefinite functionals

In this section we present some abstract critical point theorems for indefinite functionals.
First, we recall the Palais–Smale condition.
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Definition 3.1. LetZ be a Riemannian manifold. AC1 functionalf : Z→ R satisfies the
Palais–Smale condition, briefly (PS), if every sequence(zn)n∈N in Z such that

sup
n∈N

|f (zn)| < +∞ and lim
n→+∞f

′(zn) = 0

has a convergent subsequence (here,f ′(zn) goes to 0 in the norm induced on the cotangent
bundle by the Riemannian metric onZ).

An existence result for critical points can be obtained by a slight variant of the classical
saddle point theorem (cf.[3,24]).

Theorem 3.2. LetΩ be a complete Riemannian manifold andH a separable Hilbert space.
Fixed a linear subspaceH0 ofH and an elementT ∈ H , let (an)n∈N be an orthonormal
basis ofH0. SetW = H0 + T andZ = Ω ×W . Letf : Z → R be aC1 functional and,
for any integerk ≥ 1, define

Wk = span{an : n = 1,2, . . . , k} + T , Zk = Ω ×Wk and fk = f |Zk .
Fix t̄ ∈ H0 and x̄ ∈ Ω. For any real positive numberR consider the sets:

S = {(x, t̄ + T ) ∈ Z : x ∈ Ω} = Ω × {t̄ + T },
Q(R) = {(x̄, t) ∈ Z : ‖t − T − t̄‖ ≤ R},

where‖ · ‖ is the norm of the Hilbert spaceH .
Assume thatfk satisfies the(PS) condition for anyk ∈ N and there existsR > 0 such

that

supf (Q(R)) < +∞, supf (∂Q(R)) < inff (S).

Then, for anyk ∈ N, k ≥ 1, fk has a critical levelck ∈ [inf f (S), supf (Q(R))], where

ck = inf
h∈Γk

sup
x∈Qk(R)

fk(h(x)),

Γk = {h ∈ C(Zk, Zk) : h(z) = z for all z ∈ ∂Qk(R)}
and

Qk(R) = {(x̄, t) ∈ Zk : ‖t − T − t̄‖ ≤ R}.

Proof. Let k ∈ N be fixed. We remark thatS ⊂ Wk; moreover,Qk(R) ⊂ Q(R) and
∂Qk(R) ⊂ ∂Q(R) imply that

supfk(Qk(R)) ≤ supf (Q(R)), supfk(∂Qk(R)) ≤ supf (∂Q(R)).

According to the saddle point theorem (see, e.g.,[18, Theorem 8.3.1]) it follows thatck is
a critical level offk such that

inff (S) ≤ ck ≤ supf (Qk(R)) ≤ supf (Q(R)). �
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Now, in order to state a multiplicity result, we need the notion of relative category and
its main properties (cf.[7,11,12,27]).

Definition 3.3. Let Y andA be closed subsets of a topological spaceZ. The category of
A in Z relative toY , briefly catZ,Y (A), is the least integern such that there existn + 1
closed subsets ofZ, A0, A1, . . . , An, A = A0 ∪ A1 ∪ . . . ∪ An, andn + 1 functions,
hj ∈ C([0,1]× Aj ,Z), j = 0,1, . . . , n, such that

(i) hj (0, z) = z for z ∈ Aj , 0≤ j ≤ n;
(ii) h0(1, z) ∈ Y for z ∈ A0, andh0(σ, y) ∈ Y for all y ∈ A0 ∩ Y , σ ∈ [0,1];

(iii) hj (1, z) = zj for z ∈ Aj and somezj ∈ Z, 1≤ j ≤ n.

If a finite number of such sets does not exist, we set catZ,Y (A) = +∞.

Clearly, catZ(A) = catZ,∅(A) is the classical Ljusternik–Schnirelman category ofA

in Z.

Proposition 3.4. LetA, B, Y be closed subsets of a topological spaceZ.

(i) If A ⊂ B thencatZ,Y (A) ≤ catZ,Y (B);
(ii) catZ,Y (A ∪ B) ≤ catZ,Y (A)+ catZ(B);

(iii) if there existsh ∈ C([0,1]×A,Z) such thath(σ, y) = y for y ∈ A∩Y andσ ∈ [0,1],
thencatZ,Y (A) ≤ catZ,Y (B), whereB = h(1, A).

Remark 3.5. Let Z be a topological space andY a closed subset ofZ. Then (ii) of
Proposition 3.4implies that the relative category and the classical Ljusternik–Schnirelman
category are connected by the inequality

catZ,Y (A) ≤ catZ(A) for any closed setA ⊂ Z.

It is easy to see thatDefinition 3.3implies the following proposition.

Proposition 3.6. Let Z be a topological space andC, Λ be two subsets ofZ such that
C is a closed strong deformation retract ofZ\Λ, i.e., there exists a continuous mapR :
[0,1]× (Z\Λ)→ Z such that

R(0, z) = z for all z ∈ Z\Λ,
R(1, z) ∈ C for all z ∈ Z\Λ,
R(σ, z) = z for all z ∈ C, σ ∈ [0,1].

Then, catZ,C(Z\Λ) = 0.

In the sequel, we will need the following additional property of the relative category (for
the proof, cf.[4, Proposition 2.2]).

Proposition 3.7. LetY ,Z′,Y ′ be closed subsets of a topological spaceZ such thatY ′ ⊂ Z′.
Suppose that there exist a retractionr : Z→ Z′, i.e., a continuous map such thatr(z) = z
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for all z ∈ Z′, and a homeomorphismΦ : Z→ Z such that

(i) Φ(Y ′) ⊂ Y ;
(ii) r ◦Φ−1(Y ) ⊂ Y ′.
Then, ifA′ is a closed subset ofZ′, it results that

catZ,Y (Φ(A
′)) ≥ catZ′,Y ′(A

′).

The following theorem gives a multiplicity result for critical levels of a strongly indefinite
functional (for more details, see[4]).

Theorem 3.8. LetZ be aC2 complete Riemannian manifold modeled on a Hilbert space
and letf : Z → R be aC1 functional which satisfies the(PS) condition. Let us assume
that there exist two subsetsΛ andC ofZ such thatC is a closed strong deformation retract
ofZ\Λ, and

inf
z∈Λ
f (z) > sup

z∈C
f (z), catZ,C(Z) > 0.

Then, f has at leastcatZ,C(Z) critical points inZ whose critical levels are greater than
or equal toinff (Λ). Moreover, ifcatZ,C(Z) = +∞, there exists a sequence(zm)m∈N of
critical points off such that

lim
m→+∞f (zm) = sup

z∈Z
f (z).

Remark 3.9. In Theorem 3.8the critical levelscm are characterized as follows:

cm = inf
B∈Fm

sup
z∈B
f (z) for any 1≤ m ≤ catZ,C(Z),

where

Fm = {B ⊂ Z : B closed, catZ,C(B) ≥ m}.

Since we want to applyTheorem 3.8in order to get multiplicity results for normal
geodesics joining two submanifolds in a stationary Lorentzian manifold, the following result
concerning the topological properties of the space of curves joining the fixed submanifolds
is basic.

Theorem 3.10. LetM0 be a simply connected and non-contractible smooth manifold; let
P0, P1 be two closed submanifolds ofM0 and assume thatP0 andP1 are contractible in
M0. Denote byΩ(P0, P1;M0) the space of curves of classH 1 joining P0 to P1 inM0
(cf. the definition(2.3)). LetDk, Sk be the unit disk inRk and, respectively, its boundary.

Then, for anym ∈ N, there exists a compact setΓk,m ⊂ Ω(P0, P1;M0)×Dk such that

catΩ(P0,P1;M0)×Dk,Ω(P0,P1;M0)×Sk (Γk,m) ≥ m.

The proof of this result is a consequence of Corollary 4.6 in[9] and Proposition 3.2 in[8].
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Remark 3.11. Let (Γk,m)k,m be the family of compact subsets of the manifoldΩ(P0, P1;
M0)×Dk which exists byTheorem 3.10. Fixm ∈ N. The arguments used in[8] show that
the setsΓk,m have the same projection onΩ(P0, P1;M0) for all k ∈ N.

4. Existence results

From now on, we fix a stationary Lorentz manifold(M, 〈·, ·〉z)satisfying(H1);moreover,
letP0 andP1 be such that(H3) holds and definẽP0, P̃1 andP̃ ∗1 as in(1.3)with t0 = 0. For
simplicity, setΩ(P0, P1) = Ω(P0, P1;M0).

As we have seen inSection 2, normal geodesics joining̃P0 to P̃1, respectivelyP̃ ∗1 , are
critical points off 0 onZ0, respectivelyf ∗ onZ∗.

Remark 4.1. Since the action functionalf in (2.5) is Fréchet differentiable, it is easy to
prove that by(2.2) its Fréchet differential atz = (x, t) ∈ X = Ω(P0, P1) × H 1(I,R) in
ζ = (ξ, τ ) ∈ TzX ≡ TxΩ(P0, P1)×H 1(I,R) is given by

df (z)[ζ ] = 2
∫ 1

0
〈α(x)ẋ, ξ̇〉ds +

∫ 1

0
〈α′(x)[ξ ]ẋ, ẋ〉ds + 2

∫ 1

0
〈δ′(x)[ξ ], ẋ〉ṫ ds

+2
∫ 1

0
〈δ(x), ξ̇〉ṫ ds + 2

∫ 1

0
〈δ(x), ẋ〉τ̇ ds −

∫ 1

0
β ′(x)[ξ ] ṫ2 ds

−2
∫ 1

0
β(x)ṫ τ̇ ds,

whereα′, β ′ andδ′ denote, respectively, the derivatives ofα, β andδ with respect to the
Riemannian structure onM0.

In order to apply the abstract theorems of the previous section, we need the following
results.

Proposition 4.2. Assume that(1.4)holds. Then the functionalf 0 satisfies the(PS)condition
onZ0.

Proof. Let (zn)n∈N be a (PS) sequence inZ0, i.e.,

sup
n∈N

|f 0(zn)| < +∞, (4.1)

lim
n→+∞df 0(zn) = 0, (4.2)

where df 0(zn) goes to 0 in the norm induced on the cotangent bundle by the Riemannian
metric onZ0.

Setτn = tn ∈ W0 = TtnW0. By (4.2) there exists a real sequenceεn → 0 asn→ +∞
such that

εn‖ṫn‖ = df 0(zn)[(0, tn)] = 2
∫ 1

0
(〈δ(xn), ẋn〉ṫn − β(xn)ṫ2n)ds

= f 0(zn)−
∫ 1

0
(〈α(xn)ẋn, ẋn〉 + β(xn)ṫ2n)ds.
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By the previous equalities and(4.1) it follows that there exists a real constantM such that∫ 1

0
(〈α(xn)ẋn, ẋn〉 + β(xn)ṫ2n)ds ≤ M − εn‖ṫn‖,

which implies, by(1.4), that(∫ 1

0
〈ẋn, ẋn〉ds

)
n∈N

and

(∫ 1

0
ṫ2n ds

)
n∈N

are bounded. (4.3)

SinceP0 or P1 is compact,(4.3)means that the sequence(zn)n∈N is bounded inZ0, there
exists a curvez = (x, t) such that, up to a subsequence,

zn ⇀ z weakly inH 1(I,RN)×H 1(I,R), zn → z uniformly in I.

Clearly, it is z ∈ Z0, since bothP0 andP1 are closed in the complete manifoldM0.
By [2, Lemma 2.1], there exist two sequences(ξn)n∈N, (νn)n∈N ⊂ H 1(I,RN), ξn ∈
TxnΩ(P0, P1), such thatxn − x = ξn + νn for all n ∈ N, while

ξn ⇀ 0 weakly and νn → 0 strongly in H 1(I,RN). (4.4)

Takingτn = t − tn ∈ W0, we have

τn ⇀ 0 weakly inH 1(I,R), (4.5)

so(4.2)gives

lim
n→+∞df 0(zn)[(ξn, τn)] = 0. (4.6)

Obviously,(α′(xn))n∈N, (β ′(xn))n∈N and(δ′(xn))n∈N are bounded; moreover,(ξn)n∈N and
(τn)n∈N converge uniformly to 0. Then, according to(4.3) it follows that

∫ 1

0
〈α′(xn)[ξn]ẋn, ẋn〉ds = o(1),

∫ 1

0
〈δ′(xn)[ξn], ẋn〉ṫn ds = o(1),

∫ 1

0
β ′(xn)[ξn] ṫ2n ds = o(1).

On the other hand,(4.6)becomes∫ 1

0
(〈α(xn)ẋn, ξ̇n〉 + 〈δ(xn), ξ̇n〉ṫn + 〈δ(xn), ẋn〉τ̇n − β(xn)ṫnτ̇n)ds = o(1).

Sincetn = t − τn andxn = x + ξn + νn, (4.4) and (4.5)imply that

∫ 1

0
〈α(xn)ẋ, ξ̇n〉ds = o(1),

∫ 1

0
(〈δ(xn), ξ̇n〉ṫn + 〈δ(xn), ẋn〉τ̇n)ds = o(1),

∫ 1

0
β(xn)ṫ τ̇n ds = o(1).
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Lastly, we obtain∫ 1

0
〈α(xn)ξ̇n, ξ̇n〉ds +

∫ 1

0
β(xn)τ̇

2
n ds = o(1),

so(1.4) implies thatξn → 0 strongly inH 1(I,RN) andτn → 0 strongly inH 1(I,R). �

Let us point out that in the (PS) proof we have used only the assumptions thatα(x) and
β(x) are bounded from below and far from zero, while no control from above on the growth
of the coefficients is required. On the other hand, this is not true any more in the proof of
the (PS) condition forf ∗ (as well as in the proof of the geometrical estimates), so, in order
to use the hypotheses(H2), (H2)

∗ and(H5), the following remarks will be useful.

Remark 4.3. Let us recall that for anyx1, x2 ∈ M0, denoted byAx1,x2 the set of the
piecewise smooth curvesγ : I →M0 such thatγ (0) = x1, γ (1) = x2, it is

d(x1, x2) = inf

{∫ 1

0

√
〈γ̇ , γ̇ 〉ds : γ ∈ Ax1,x2

}
.

Then, by(H3), takenx0 ∈ M0, there existsK > 0 such that, ifx ∈ Ω(P0, P1), there
results

d(x(s), x0) ≤
∫ 1

0

√
〈ẋ, ẋ〉ds +K for all s ∈ I.

Hence, for any real numberp ≥ 0, it is

dp(x(s), x0) ≤ 2p(‖ẋ‖p +Kp) for all s ∈ I,
where it is‖ẋ‖2 = ∫ 1

0 〈ẋ, ẋ〉ds.

Remark 4.4. Let a, b, q ≥ 0 be fixed. Then, by the Young inequality a positive constant
γ = γ (q) exists such thataqb ≤ aq+1 + γ bq+1.

Proposition 4.5. Assume that(H2)
∗ holds. Then, the functionalf ∗ satisfies the(PS) con-

dition onZ∗.

Proof. Let (zn)n∈N be a (PS) sequence inZ∗, i.e.,

sup
n∈N

|f ∗(zn)| < +∞, (4.7)

lim
n→+∞df ∗(zn) = 0. (4.8)

As τn = tn − T ∗ ∈ TtnW ∗, by (4.8)we deduce that there existsεn → 0 asn→+∞ such
that

εn‖ṫn − t∗‖ = df ∗(zn)[(0, τn)]

= 2
∫ 1

0
(〈δ(xn), ẋn〉ṫn − β(xn)ṫ2n)ds−2t∗

∫ 1

0
(〈δ(xn), ẋn〉 − β(xn)ṫn)ds.
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Then, by(2.5) the previous formula gives

εn‖ṫn − t∗‖ = f ∗(zn)−
∫ 1

0
(〈α(xn)ẋn, ẋn〉 + β(xn)ṫ2n)ds

−2t∗
∫ 1

0
(〈δ(xn), ẋn〉 − β(xn)ṫn)ds. (4.9)

It is easy to see that by(1.5) and (1.6)andRemarks 4.3 and 4.4there existR′1, R
′
2 > 0 such

that ∣∣∣∣∣
∫ 1

0
〈δ(xn), ẋn〉ds

∣∣∣∣∣≤
∫ 1

0
(R1 + R2d

q(xn(s), x0))|ẋn(s)|ds

≤ (R1 + 2qR2(‖ẋn‖q +Kq))‖ẋn‖ ≤ R′1 + R′2‖ẋn‖q+1 (4.10)

and ∣∣∣∣∣
∫ 1

0
β(xn)ṫn ds

∣∣∣∣∣ ≤ (R1 + 2qR2(‖ẋn‖q +Kq))‖ṫn‖ ≤ R′1 + R′2(‖ẋn‖q+1 + ‖ṫn‖q+1).

Then, these last inequalities,(4.7) and (4.9)imply∫ 1

0
(〈α(xn)ẋn, ẋn〉 + β(xn)ṫ2n)ds

≤ M∗ − εn‖ṫn − t∗‖ + 2|t∗|(2R′1 + 2R′2‖ẋn‖q+1 + R′2‖ṫn‖q+1)

for a suitable real constantM∗. As q + 1 < 2, (1.4)and the previous estimate assure that
(zn)n∈N is bounded inZ∗; hence, up to a subsequence,(zn)n∈N converges weakly to a curve
z ∈ Z∗. Arguing as in the second part of the proof of Proposition 4.1, we conclude that
(zn)n∈N goes toz strongly inZ∗. �

Since the functionalsf 0 andf ∗ are unbounded from above and from below on infinite-
dimensional linear manifolds, the Rabinowitz saddle point theorem can not be directly
applied, so we introduce a Galerkin approximation, more precisely a finite-dimensional
approximation on the space of the time variable.

We consider the orthonormal basis{ sin(iπs)}i∈N of H 1
0 . For anyk ∈ N we set

W0
k = Hk ⊕ RjI , W ∗

k = Hk + T ∗,
where

Hk = span{ sin(iπs), i = 1,2, . . . , k}.
Moreover, we set

Z0
k = Ω(P0, P1)×W0

k , Z∗k = Ω(P0, P1)×W ∗
k

and

f 0
k = f 0|Z0

k
, f ∗k = f ∗|Z∗k .
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The following result allows to determinate the critical points of the strongly indefinite
functionalf 0 onZ0 as limits of suitable sequences of critical points of the functionalsf 0

k

onZ0
k .

Proposition 4.6. Assume that(1.4)holds. For anyk ∈ N let zk ∈ Z0
k be a critical point of

f 0
k . Moreover, assume that two constantsc1 andc2 exist, independent ofk, such that

c1 ≤ f 0
k (zk) ≤ c2 for all k ∈ N.

Then, up to subsequences, (zk)k∈N converges to a critical pointz of f 0 such thatc1 ≤
f 0(z) ≤ c2.

Proof. The same arguments of Proposition 4.2 prove that the sequence(zk)k∈N is bounded
in Z0; then, up to a subsequence,zk ⇀ z weakly inZ0. The remainder of the proof follows
as in[5, Proposition 6.1]. �

An analogous result holds for the functionalf ∗ onZ∗.

Proposition 4.7. Assume that(H2)
∗ holds. For anyk ∈ N let zk ∈ Z∗k be a critical point

of f ∗k . Moreover, assume that two constantsc̄1 and c̄2 exist, independent ofk, such that

c̄1 ≤ f ∗k (zk) ≤ c̄2 for all k ∈ N.

Then, up to subsequences, (zk)k∈N converges to a critical pointz of f ∗ such that

c̄1 ≤ f ∗(z) ≤ c̄2.

Remark 4.8. It is possible to prove that the same results ofPropositions 4.6 and 4.7still hold
if the critical levels(f 0

k (zk))k∈N, respectively(f ∗k (zk))k∈N, are bounded only from above.

Finally, we can prove the existence results stated inTheorems 1.3 and 1.4.
In the following, withai we denote suitable positive constants.

Proof of Theorem 1.3. Since our aim is to applyTheorem 3.2to the functionalf 0, let
us point out that the same arguments used in the proof ofProposition 4.2allows to state
thatf 0

k satisfies the (PS) condition for allk ∈ N. Now, takeny ∈ Ω(P0, P1) ∩ C1(I ) and
R > 0, let us define the following sets:

S0 = {(x, jI ) ∈ Z0 : x ∈ Ω(P0, P1)} = Ω(P0, P1)× {jI },
Q0(R) = {(y, t) ∈ Z0 : ‖t − jI‖0 ≤ R}

where‖ · ‖0 is defined in(2.7). Since(d/ds)jI (s) = 1, by the hypothesis(H2), Remark 4.3
and the estimate(4.10)there results

f 0(z) =
∫ 1

0
(〈α(x)ẋ, ẋ〉 + 2〈δ(x), ẋ〉 − β(x))ds ≥ λ‖ẋ‖2 − a1 − a2‖ẋ‖q+1

for all z = (x, jI ) ∈ S0.
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So, asq + 1< 2, there exists a constantN > 0 such that

f 0(z) ≥ 1
2λ‖ẋ‖2 −N for all z ∈ S0. (4.11)

Therefore,

inff 0(S0) ≥ −N. (4.12)

On the other hand, fixedR > 0, for anyz = (y, t) ∈ Q0(R) it is

f 0(z) =
∫ 1

0
(〈α(y)ẏ, ẏ〉 + 2〈δ(y), ẏ〉ṫ − β(y)ṫ2)ds ≤ a3 + a4‖ṫ‖ − ν‖ṫ‖2, (4.13)

which gives

supf 0(Q0(R)) < +∞.
Straightforward calculations show that

|‖t − jI‖0 − 1| ≤ ‖t‖0 ≤ ‖t − jI‖0 + 1 for all t ∈ W0. (4.14)

So,‖t − jI‖0 = R implies

|R − 1| ≤ ‖t‖0 ≤ R + 1 for allz = (y, t) ∈ ∂Q0(R).

Whence, since‖ṫ‖ = ‖t‖0, by (4.13)it follows

f 0(z) ≤ a5 + a6R − νR2 for all z ∈ ∂Q0(R). (4.15)

By (4.12) and (4.15)we can chooseR0 > 0 so large that

supf 0(∂Q0(R0)) < inff 0(S0).

Then, byTheorem 3.2for anyk ≥ 1 there exists a critical pointzk of f 0
k such that

inff 0(S0) ≤ f 0
k (zk) ≤ supf 0(Q0(R0)).

Hence,Proposition 4.6provides the existence of a critical point of the action functionalf 0

onZ0, i.e., a normal geodesic joining̃P0 to P̃1. �

In the sequel we will denote bȳai some positive constants independent oft∗.

Proof of Theorem 1.4. Takeny ∈ Ω(P0, P1) ∩ C1(I ) andR > 0, let us define the
following sets:

S∗ = {(x, T ∗) ∈ Z∗ : x ∈ Ω(P0, P1)} = Ω(P0, P1)× {T ∗},
Q∗(R) = {(y, t) ∈ Z∗ : ‖t − T ∗‖0 ≤ R}.

Since(d/ds)T ∗(s) = t∗, by(H2)
∗, Remarks 4.3 and 4.4and arguing as in(4.10)we deduce
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that for allz = (x, T ∗) ∈ S∗ it is

f ∗(z)=
∫ 1

0
(〈α(x)ẋ, ẋ〉 + 2〈δ(x), ẋ〉t∗ − β(x)(t∗)2)ds

≥ λ‖ẋ‖2 − ā1|t∗|(‖ẋ‖q+1 + |t∗|‖ẋ‖q)− ā2(|t∗| + (t∗)2)
≥ λ‖ẋ‖2 − 2ā1|t∗|‖ẋ‖q+1 − ā3(|t∗|2+q + (t∗)2 + |t∗|) (4.16)

with q + 1< 2. Therefore, there exists a positive constantN∗, depending ont∗, such that

inff ∗(S∗) ≥ −N∗. (4.17)

On the other hand, takenR > 0 it is

f ∗(z) ≤ ā4 + ā5‖ṫ‖ − ν‖ṫ‖2 for all z = (y, t) ∈ Q∗(R). (4.18)

Hence,

supf ∗(Q∗(R)) < +∞.
Now, let us remark that ift ∈ W ∗, thent (0) = 0 andt (1) = t∗, whence

‖t − T ∗‖2
0 = ‖ṫ‖2 − (t∗)2 (4.19)

and, in particular,

‖ṫ‖2 = R2 + (t∗)2 if z = (y, t) ∈ ∂Q∗(R), i.e., ‖t − T ∗‖0 = R. (4.20)

Obviously, by(4.18) and (4.20)we have

supf ∗(∂Q∗(R)) ≤ ā4 + ā5(R + |t∗|)− ν(R2 + (t∗)2). (4.21)

Hence, choosing a suitableR∗ large enough,(4.17) and (4.21)imply that

supf ∗(∂Q∗(R∗)) < inff ∗(S∗). (4.22)

By Theorem 3.2andProposition 4.7it follows thatf ∗ has a critical pointz such that

inff ∗(S∗) ≤ f ∗(z) ≤ supf ∗(Q∗(R∗))

and, in particular,(4.16)implies

inff ∗(S∗) ≥ inf
x∈Ω(P0,P1)

(λ‖ẋ‖2 − 2ā1|t∗|‖ẋ‖q+1 − 2ā3(|t∗|2+q + |t∗|)),

while (4.18)and‖ṫ‖ ≥ |t∗| (see(4.19)) give

supf ∗(Q∗(R∗)) ≤ ā4 + ā5(R
∗ + |t∗|)− ν(t∗)2. (4.23)

In order to study the causal character of the found geodesic, we need more information
about the infimum off ∗ onS∗ and about a possible choice of the constantR∗.

Let us consider the mapϕ∗(s) = λs2 − 2ā1|t∗|sq+1 − 2ā3(|t∗|2+q + |t∗|) defined if
s ≥ 0. It is easy to see thatϕ∗ attains its minimum in

s∗ =
(
ā1(q + 1)|t∗|

λ

)1/(1−q)

and is strictly increasing in [s∗,+∞[.
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Let us remark that the assumptions(H3) and(H4) imply that d̄ = d(P0, P1) > 0 exists
(independent oft∗) such that

‖ẋ‖ ≥ d̄ for all x ∈ Ω(P0, P1).

Then, if |t∗| is small enough, it iss∗ < d̄ andϕ∗(d̄) > 0. Therefore,

inf
x∈Ω(P0,P1)

(λ‖ẋ‖2 − 2ā1|t∗|‖ẋ‖q+1 − 2ā3(|t∗|2+q + |t∗|)) ≥ ϕ∗(d̄) > 0,

so, a previous estimate assures that the found geodesic is spacelike.
On the other hand, it can be proved that

ϕ∗(s∗) ≥ −ā6(|t∗|2/(1−q) + |t∗|).
Whence, in(4.17)we can assume

N∗ = ā6(|t∗|2/(1−q) + |t∗|) (4.24)

and straightforward calculations show that in(4.22) we can fix the constant asR∗ =
ā7|t∗|1/(1−q) + ā8. Hence, by(4.23)it is

f ∗(z) ≤ ā9 + ā10|t∗|1/(1−q) − ν(t∗)2

and, if 1/(1− q) < 2, i.e.,q < 1/2, then|t∗| large enough givesf ∗(z) < 0 and the found
geodesic is timelike. �

5. Multiplicity results

In this section we will prove the multiplicity results stated inTheorems 1.7 and 1.8. First,
we will prove some technical lemmas.

Lemma 5.1. There exists a continuous mapD0 : R+ → R+ such that

z = (x, t) ∈ Z0, ‖t − jI‖0 = D0(‖ẋ‖)⇒ f 0(z) ≤ −2N, (5.1)

where N is the positive constant introduced in(4.12).

Proof. Let z = (x, t) ∈ Z0; then by(1.4) and (1.5), (H5) andRemark 4.3it follows that

f 0(z)≤
∫ 1

0
(R1 + R2d

p(x, x0))〈ẋ, ẋ〉ds+2
∫ 1

0
(R1 + R2d

q(x, x0))|ẋ||ṫ |ds−ν‖ṫ‖2

≤ (R1 + 2pR2(‖ẋ‖p +Kp))‖ẋ‖2

+2
∫ 1

0
(R1 + 2qR2(‖ẋ‖q +Kq))|ẋ||ṫ |ds − ν‖ṫ‖2

≤ (R1+2pR2(‖ẋ‖p+Kp))‖ẋ‖2+2(R1+2qR2(‖ẋ‖q +Kq))‖ẋ‖‖ṫ‖ − ν‖ṫ‖2.
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Moreover, a particular case of the Young inequality implies that

f 0(z)≤ (R1 + 2pR2(‖ẋ‖p +Kp))‖ẋ‖2

+ 2

ν
(R1 + 2qR2(‖ẋ‖q +Kq))2‖ẋ‖2 − ν

2
‖ṫ‖2, (5.2)

and therefore, as 2q < p (seeRemark 1.9) by (5.2) and (4.14)it follows that there existb1,

b2 > 0 such that

f 0(z) ≤ ‖ẋ‖2(b1 + b2‖ẋ‖p)− 1
2ν(‖t − jI‖0 − 1)2 for all z = (x, t) ∈ Z0. (5.3)

Setting

D0(r) = 1+
√

2r2(b1 + b2rp)+ 4N

ν
, (5.4)

we have, clearly, thatD0 : R+ → R+ is continuous and

r2(b1 + b2r
p)− 1

2ν(D
0(r)− 1)2 = −2N for all r ≥ 0.

Hence,(5.1) follows by (5.3). �

Remark 5.2. By the definition(5.4)we have

min
r∈R+

D0(r) = D0(0) = 1+
√

4N

ν
> 1.

In order to proveTheorem 1.7we consider the following sets

S0 = Ω(P0, P1)× {jI }
and, fixed any integerk ≥ 1,

C0
k = {(x, t) ∈ Z0

k : ‖t − jI‖0 = D0(‖ẋ‖)}.
It is easy to show that(4.12)andLemma 5.1imply

supf 0
k (C

0
k ) ≤ −2N < −N ≤ inff 0

k (S
0). (5.5)

Lemma 5.3. The setC0
k is a strong deformation retract ofZ0

k\S0.

Proof. The proof follows as in[5, Lemma 7.3]. �

Lemma 5.4. LetM0 be 1-connected. For anym ∈ N there exists a compact subsetKm of
Z0
k such thatcatZ0

k ,C
0
k
(Km) ≥ m.

Proof. Consider the following sets:

B0
k = {t ∈ W0

k : ‖t − jI‖0 ≤ 1}, B̃0
k = Ω(P0, P1)× B0

k ,

Σ0
k = ∂B0

k = {t ∈ W0
k : ‖t − jI‖0 = 1}, Σ̃0

k = Ω(P0, P1)×Σ0
k .
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Letm ∈ N. By (H3) and(H6), Theorem 3.10implies the existence of a compact setΓk,m
in B̃0

k such that

cat
B̃0
k ,Σ̃

0
k
(Γk,m) ≥ m. (5.6)

Now, asρ0 is continuous and strictly positive (seeRemark 5.2), arguing as in[5, Lemma 7.4]
we can construct a retractionη : Z0

k → B̃0
k and an homeomorphismΦ : Z0

k → Z0
k such

that

η(x, t) =



(x, t) if (x, t) ∈ B̃0

k ,(
x,

t − jI
‖t − jI‖0

+ jI
)

if (x, t) /∈ B̃0
k ,

while

Φ(x, t) = (x, φ(x, t)) = (x, D0(‖ẋ‖)(t − jI )+ jI ).
It is easy to see thatΦ(Σ̃0

k ) ⊂ C0
k andη ◦ Φ−1(C0

k ) ⊂ Σ̃0
k . Hence,Proposition 3.7and

(5.6)provide that

catZ0
k ,C

0
k
(Φ(Γk,m)) ≥ cat

B̃0
k ,Σ̃

0
k
(Γk,m) ≥ m. �

Remark 5.5. LetΓk,m be as in the proof ofLemma 5.4. We can assumeΓk,m = Vm×Gk,m,
whereVm is compact inΩ(P0, P1) whileGk,m is compact inW0

k . By Remark 3.11the set
Vm can be chosen independent ofk ≥ 1. By the definition ofΦ it follows that also the set
Km = Φ(Γk,m) = Vm × φ(Γk,m) has the spatial part independent ofk.

Finally, we can state the multiplicity theorems given inSection 1. Even if their proofs
are obtained as in[5], we outline them for completeness.

Proof of Theorem 1.7. Without loss of generality we can assume thatM0 is a 1-connected
manifold. In fact, ifπ1(M0) is finite and nontrivial, we can extendLemma 5.4by means of
the universal covering ofM0. On the contrary, ifπ1(M0) is infinite, it is enough to apply
Theorem 1.3at the functional restricted to each connected component. So, the existence
of infinitely many solutions is stated; moreover, suitable a priori estimates prove that their
energies diverge positively.

As the functionalf 0
k verifies the Palais–Smale condition onZ0

k , (5.5) andLemmas 5.3
and 5.4allow to applyTheorem 3.8; then, a sequence of critical points(zmk )m≥1 of f 0

k exists
such that

f 0
k (z

m
k ) ≥ inff 0

k (S
0), lim

m→+∞f
0
k (z

m
k ) = supf 0

k (Z
0
k ) = +∞.

Moreover, byRemark 3.9there results

f 0
k (z

m
k ) = inf

B∈F 0
k,m

sup
z∈B
f 0
k (z) for allm ≥ 1, (5.7)

where

F 0
k,m = {B ⊂ Z0

k : B closed, catZ0
k ,C

0
k
(B) ≥ m}.
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Now, we claim that

(i) for all m ≥ 1 there exists a constantγm > 0, independent ofk, such that

f 0
k (z

m
k ) ≤ γm; (5.8)

(ii) for all c > 0 there existsmc ∈ N, independent ofk, such that

f 0
k (z

m
k ) ≥ λc −N for allm ≥ mc, (5.9)

with λ as in(1.4)andN as in(4.12).

In fact, letm ≥ 1 andKm = Φ(Γk,m) defined as in the proof ofLemma 5.4. By Remark 5.5,
we can assumeKm = Vm × φ(Γk,m) with Vm compact subset ofΩ(P0, P1). It is easy to
see that, taken

γm = max
x∈Vm

(‖ẋ‖2(b1 + b2‖ẋ‖p)),

(5.3) implies

f 0
k (z) ≤ γm for all z = (x, t) ∈ Km.

Then, the proof of (i) follows by(5.7).
Now, fix c > 0 andk,m ≥ 1. Set

Ec = {x ∈ Ω(P0, P1) : ‖ẋ‖2 ≤ 2c}, Ec = {x ∈ Ω(P0, P1) : ‖ẋ‖2 ≥ 2c}.
If B ∈ F 0

k,m is such that

B ∩ (Ec × {jI }) �= ∅, (5.10)

then by(4.11)it is

supf 0
k (B) ≥ λc −N. (5.11)

On the other hand, letB ∈ F 0
k,m be such thatB ∩ (Ec × {jI }) = ∅; then

B ⊂ (Ec × {jI }) ∪ (Z0
k\S0).

By Propositions 3.4 and 3.6andLemma 5.3it follows that

m ≤ catZ0
k ,C

0
k
(B) ≤ catΩ(P0,P1)(E

c). (5.12)

As the assumptions(H1) and(H3) hold, the functional
∫ 1

0 〈ẋ, ẋ〉ds verifies the (PS) condi-
tion onΩ(P0, P1) (see[15]). Then, it is well known that

catΩ(P0,P1)(E
c) < +∞,

(for instance, cf.[18]). Hence, by(5.12), there existsmc ∈ N such that for allm ≥ mc
andB ∈ F 0

k,m (5.10)holds. Moreover,(5.9) follows by (5.11). So, by(5.8) and (5.9)there
results

λc −N ≤ f 0
k (z

m
k ) ≤ γm for all k ≥ 1 if m ≥ mc.
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Whence,Proposition 4.6implies that there exists a critical pointzm of f 0 such that

λc −N ≤ f 0(zm) ≤ γm. (5.13)

Sincec > 0 can be choosen arbitrarily large, thanks to(5.13)the previous arguments can
be repeated and complete the proof. �

Proof of Theorem 1.8. Let t∗ ∈ R. Arguing as in the proof ofTheorem 1.7, we can assume
thatM0 is 1-connected.

Fixedk ≥ 1, it is easy to define a continuous mapD∗ : R+ → R+ such that it results that

supf ∗k (C
∗
k ) ≤ −2N∗ < −N∗ ≤ inff ∗k (S

∗) if t∗ �= 0,

while

supf ∗k (C
∗
k ) ≤ −1< 0 ≤ inff ∗k (S

∗) if t∗ = 0

with

S∗ = Ω(P0, P1)× {T ∗}, C∗k = {(x, t) ∈ Z∗k : ‖t − T ∗‖0 = D∗(‖ẋ‖)}.
Moreover,C∗k is a strong deformation retract ofZ∗k\S∗ and for allm ≥ 1 there exists a
compact subsetK∗

m of Z∗k such that

catZ∗k ,C∗k (K
∗
m) ≥ m, (5.14)

whereK∗
m has the spatial partV ∗m independent ofk andt∗ (these results can be proved as

in Lemmas 5.3 and 5.4by replacingjI with T ∗ andD0 with D∗).
Assumet∗ �= 0 (the proof is simpler ift∗ = 0) and fixm ≥ 1 andK∗

m such that(5.14)
holds. Let us point out thatK∗

m is defined as in the proof ofLemma 5.4. More precisely,
taken

B̃∗k = Ω(P0, P1)× {t ∈ W ∗
k : ‖t − T ∗‖0 ≤ 1},

Φ∗ : (x, t) ∈ Z∗k �→ (x, D∗(‖ẋ‖)(t − T ∗)+ T ∗) ∈ Z∗k ,

it is K∗
m = Φ∗(Γ ∗k,m), whereΓ ∗k,m is a suitable compact subset ofB̃∗k .

Hence, if(x, t) ∈ K∗
m it is easy to see that

‖t − T ∗‖0 ≤ D∗(‖ẋ‖).
Then, by(4.19), there results

|t∗| ≤ ‖ṫ‖ ≤ D∗(‖ẋ‖)+ |t∗| for all z = (x, t) ∈ K∗
m. (5.15)

Obviously,(1.4)and the Hölder inequality give

f ∗k (z) ≤
∫ 1

0
〈α(x)ẋ, ẋ〉ds + 2

(∫ 1

0
〈δ(x), ẋ〉2 ds

)1/2

‖ṫ‖ − ν‖ṫ‖2.
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Therefore, sinceV ∗m is bounded inΩ(P0, P1), there exist two positive constantspm and
qm, independent ofk andt∗, such that(5.15)implies

supf ∗k (K
∗
m) ≤ pm + qm|t∗| − ν(t∗)2. (5.16)

On the other hand, reasoning as in the proof of(5.9), for anyc > 0 there existsmc ∈ N,
independent ofk, such that, defined

F ∗k,m = {B ⊂ Z∗k : B closed, catZ∗k ,C∗k (B) ≥ m},
for all B ∈ F ∗k,m it is B ∩ (Ec × {T ∗}) �= ∅ and then

inf
B∈F ∗k,m

sup
z∈B
f ∗k (z) ≥ ϕ∗(

√
2c) for allm ≥ mc, (5.17)

whereϕ∗ is defined in the proof ofTheorem 1.3. By (5.16)and(5.17)the same arguments
used in the proof ofTheorem 1.7show the existence of a monotonically increasing sequence
(c∗m)m≥1 of critical levels off ∗ such that

ϕ∗(
√

2c) ≤ c∗m ≤ pm + qm|t∗| − ν(t∗)2. (5.18)

Clearly, (5.18) implies the existence of infinitely many spacelike geodesics joiningP̃0 to
P̃ ∗1 .

Lastly, we prove that(1.8) holds. First of all we remark that if two integersm, h ≥ 1
exist such thatc∗m = c∗m+1 = · · · = c∗m+h, arguing as in[11], there exist at leasth distinct
critical points at levelc∗m (e.g., cf.[4, Lemma 5.9]). Moreover, for allm ≥ 1 there exists
Tm > 0 such that for all|t∗| ≥ Tm there results

pm + qm|t∗| − ν(t∗)2 < 0

and therefore by(5.18)f ∗ has at leastm distinct critical points having negative energy.�
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